Search results for "master equations"
showing 7 items of 7 documents
On the validity of non-Markovian master equation approaches for the entanglement dynamics of two-qubit systems
2010
In the framework of the dissipative dynamics of coupled qubits interacting with independent reservoirs, a comparison between non-Markovian master equation techniques and an exact solution is presented here. We study various regimes in order to find the limits of validity of the Nakajima–Zwanzig and the time-convolutionless master equations in the description of the entanglement dynamics. A comparison between the performances of the concurrence and the negativity as entanglement measures for the system under study is also presented.
Robust non-Markovianity in ultracold gases
2012
We study the effect of thermal fluctuations on a probe qubit interacting with a Bose-Einstein condensed (BEC) reservoir. The zero-temperature case was studied in [Haikka P et al 2011 Phys. Rev. A 84 031602], where we proposed a method to probe the effects of dimensionality and scattering length of a BEC based on its behavior as an environment. Here we show that the sensitivity of the probe qubit is remarkably robust against thermal noise. We give an intuitive explanation for the thermal resilience, showing that it is due to the unique choice of the probe qubit architecture of our model.
Master equations for correlated quantum channels
2012
We derive the general form of a master equation describing the interaction of an arbitrary multipartite quantum system, consisting of a set of subsystems, with an environment, consisting of a large number of sub-envirobments. Each subsystem "collides" with the same sequence of sub-environments which, in between the collisions, evolve according to a map that mimics relaxations effects. No assumption is made on the specific nature of neither the system nor the environment. In the weak coupling regime, we show that the collisional model produces a correlated Markovian evolution for the joint density matrix of the multipartite system. The associated Linblad super-operator contains pairwise term…
Reconstruction of Markovian master equation parameters through symplectic tomography
2009
In open quantum systems, phenomenological master equations with unknown parameters are often introduced. Here we propose a time-independent procedure based on quantum tomography to reconstruct the potentially unknown parameters of a wide class of Markovian master equations. According to our scheme, the system under investigation is initially prepared in a Gaussian state. At an arbitrary time t, in order to retrieve the unknown coefficients one needs to measure only a finite number (ten at maximum) of points along three time-independent tomograms. Due to the limited amount of measurements required, we expect our proposal to be especially suitable for experimental implementations.
Master equations for two qubits coupled via a nonlinear mode
2013
A microscopic master equation describing the dynamics of two qubits coupled via a nonlinear mediator is constructed supposing that the two qubits, as well as the nonlinear mode, interact, each with its own independent bosonic bath. Generally speaking the master equation derived in this way represents a more appropriate tool for studying the dynamics of open quantum systems. Indeed we show that it is more complex than the phenomenological master equation, constructed simply adding ad hoc dissipative terms.
Quantum collision models: Open system dynamics from repeated interactions
2022
We present an extensive introduction to quantum collision models (CMs), also known as repeated interactions schemes: a class of microscopic system-bath models for investigating open quantum systems dynamics whose use is currently spreading in a number of research areas. Through dedicated sections and a pedagogical approach, we discuss the CMs definition and general properties, their use for the derivation of master equations, their connection with quantum trajectories, their application in non-equilibrium quantum thermodynamics, their non-Markovian generalizations, their emergence from conventional system-bath microscopic models and link to the input-output formalism. The state of the art o…
Non-Hermitian Physics and Master Equations
2022
A longstanding tool to characterize the evolution of open Markovian quantum systems is the GKSL (Gorini-Kossakowski-Sudarshan-Lindblad) master equation. However, in some cases, open quantum systems can be effectively described with non-Hermitian Hamiltonians, which have attracted great interest in the last twenty years due to a number of unconventional properties, such as the appearance of exceptional points. Here, we present a short review of these two different approaches aiming in particular to highlight their relation and illustrate different ways of connecting non-Hermitian Hamiltonian to a GKSL master equation for the full density matrix.